4builders.ru

Строй журнал
5 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как кирпич проводит тепло

Как кирпич проводит тепло

Теплопроводность

Каждый предмет может служить «мостиком», по которому перейдет тепло от тела более нагретого к телу менее нагретому.

Таким мостиком является, например, чайная ложка, опущенная в стакан с горячим чаем. Металлические предметы очень хорошо проводят тепло. Конец ложки в стакане становится теплым уже через секунду.

Если нужно перемешивать какую-либо горячую смесь, то ручку у мешалки надо сделать из дерева или пластмассы. Эти твердые тела проводят тепло в 1000 раз хуже, чем металлы. Мы говорим «проводят тепло», но с таким же успехом можно было бы сказать «проводят холод». Конечно, свойства тела не изменяются от того, в какую сторону идет по нему поток тепла. В морозные дни мы остерегаемся па улице притрагиваться голой рукой к металлу, но без опаски беремся за деревянную ручку.

К плохим проводникам тепла — их также называют теплоизоляторами — относятся дерево, кирпич, стекло, пластмассы. Из этих материалов делают стены домов, печей и холодильников.

К хорошим проводникам относятся все металлы. Наилучшими проводниками являются медь и серебро — они проводят тепло в два раза лучше, чем железо.

Конечно, «мостиком» для перехода тепла может служить не только твердое тело. Жидкости тоже проводят тепло, но. много хуже, чем металлы. По теплопроводности металлы превосходят твердые и жидкие неметаллические тела в сотни раз.

Чтобы показать плохую теплопроводность воды, делают такой опыт. В пробирке с водой закрепляют на дне кусочек льда, а верх пробирки подогревают на газовой горелке — вода начинает кипеть, а лед еще и не думает таять. Если бы пробирка была без воды и из металла, то кусочек льда начал бы таять почти сразу же. Вода проводит тепло примерно в двести раз хуже, чем медь.

Газы проводят тепло в десятки раз хуже, чем конденсированные неметаллические тела. Теплопроводность воздуха в 20 000 раз меньше теплопроводности меди.

Плохая теплопроводность газов позволяет взять в руку кусок сухого льда, температура которого -78°С, и даже держать на ладони каплю жидкого азота, имеющего температуру -196°С. Если не сжимать пальцами эти холодные тела, то «ожога» не будет. Дело заключается в том, что при очень энергичном кипении капля жидкости или кусок твердого тела покрывается «паровой рубашкой» и образовавшийся слой газа служит теплоизолятором.

Сфероидальное состояние жидкости — так называется состояние, при котором капли окутаны паром,- образуется в том случае, если вода попадает на очень горячую сковородку. Капля кипятка, попавшая на ладонь, сильно обжигает руку, хотя разность температур кипятка и человеческого тела меньше разности температур руки и жидкого воздуха. Рука холоднее капли кипятка, тепло уходит от капли, кипение прекращается и паровая рубашка не образуется.

Нетрудно сообразить, что самым лучшим изолятором тепла является вакуум — пустота. В пустоте нет переносчиков тепла, и теплопроводность будет наименьшей.

Значит, если мы хотим создать тепловую защиту; спрятать теплое от холодного или холодное от теплого, то лучше всего соорудить оболочку с двойными стенками и выкачать воздух из пространства между стенками. При этом мы сталкиваемся со следующим любопытным обстоятельством. Если по мере разрежения газа следить за изменением его теплопроводности, то мы обнаружим, что вплоть до того момента, когда давление достигает нескольких миллиметров ртутного столба, теплопроводность практически не меняется и лишь при переходе к более высокому вакууму наши ожидания оправдываются — теплопроводность резко падает.

Для того чтобы понять это явление, надо попробовать наглядно представить себе, в чем заключается явление переноса тепла в газе.

Передача тепла от нагретого места в холодные происходит путем передачи энергии от одной молекулы к соседней. Понятно, что соударения быстрых молекул с медленными обычно приводят к ускорению медленных молекул и замедлению быстрых. А это и означает, что горячее место станет холоднее, а холодное нагреется.

Как же сказывается уменьшение давления на передаче тепла? Так как уменьшение давления понижает плотность, уменьшится и число встреч быстрых молекул с медленными, при которых происходит передача ‘энергии. Это уменьшало бы теплопроводность. Однако; с другой стороны, уменьшение давления приводит к увеличению длины свободного пробега молекул,; которые, таким образом, переносят тепло на большие расстояния, а это способствует увеличению теплопроводности. Расчет показывает, что оба эффекта уравновешиваются, и способность к передаче тепла не меняется некоторое время при откачке воздуха.

Так будет до тех пор, пока вакуум не станет настолько значительным, что длина пробега сравняется с расстоянием между стенками сосуда. Теперь дальнейшее понижение давления уже не может изменить длины пробега молекул, «болтающихся» между стенками, падение плотности не «уравновешивается» и теплопроводность быстро падает пропорционально давлению, доходя до ничтожных значений по достижении высокого вакуума. На применении вакуума и основано устройство термосов. Термосы очень распространены, они применяются не только для хранения горячей и холодной пищи, но и в науке и технике. В этом случае их называют, по имени изобретателя, сосудами Дьюара. В таких сосудах (иногда их просто называют дьюарами) перевозят жидкие воздух, азот, кислород. Позже мы расскажем, каким образом эти газы получаются в жидком состоянии * .

Читать еще:  Корень у слова кирпич

* ( Всякий, кто видел баллоны из термосов, замечал, что у них всегда посеребренные стенки. А почему? Дело в том, что теплопроводность, о которой мы говорили,- не единственный способ передачи тепла. Существует еще другой способ передачи, о которой мы поговорим в другой книге,- так называемое излучение. В обычных условиях он гораздо слабее, чем теплопроводность, но все же вполне заметен. Для ослабления излучения и производится серебрение стенок термоса.)

Сопротивление теплопередаче кирпичной стены

В современном сегменте индивидуального строительства России кирпич остается самым популярным стеновым материалом. Естественно, на то есть причины:

  • прочность и надежность;
  • экологическая чистота (кирпич производится из натуральных материалов, и не содержит вредных компонентов);
  • способность пропускать воздух, то есть дышать (что позволяет поддерживать комфортный микроклимат внутри помещений);
  • полная негорючесть;
  • хорошие изолирующие свойства.

Одним из основных показателей стеновой конструкции в нашей климатической зоне является ее способность противостоять потерям тепла. Исходя из нормативов теплоизоляции, подбирается толщина стены, и, соответственно, расход материала. Кирпич не является исключением.

Сопротивление теплопередаче кирпичиной стены находится в прямой зависимости от коэффициента теплопроводности кирпича. Чем ниже теплопроводность, тем выше сопротивляемость теплопередаче, и тем меньше будут затраты на отопление объекта.

Теплопроводность кирпича зависит от нескольких факторов

  • плотность – чем она выше, тем лучше кирпич проводит тепло;
  • состав кирпича (в общем случае, силикатный кирпич хуже проводит тепло, чем стандартный керамический);
  • конструкция кирпича (кирпич с пустотами является лучшим изолятором, нежели полнотелый кирпич);
  • влажность – чем выше влажность, тем лучше теплопроводность (в качестве проводника тепла выступают частицы воды в структуре кирпича).

Одна из основных задач при проектировании кирпичного дома – расчет толщины стеновой кладки, исходя из потребностей теплоизоляции и требований к несущей способности. Так как кирпич является довольно прочным материалом, то требование к несущей способности перекрывается раньше, чем достигается требуемый уровень теплоизоляции.

Обычно, требуемый показатель теплопроводности берется из нормативных документов – СНиПов, где изложены основные требования к стеновым конструкциям в различных климатических зонах.

Следует учесть, что при расчетах толщины стены необходимо принять во внимание современные методики строительства, а именно многослойную кладку. Ее суть в том, что стена возводится не из одного кирпича, а с применением дополнительного слоя утеплителя. Это позволяет существенно повысить изолирующие свойства стены, не увеличивая ее толщину.

Выгоды такого подхода очевидны: кирпич заметно дороже утеплителя, и такая замена позволяет снизить затраты на строительство. Более того, использование утеплителя вместо дополнительного кирпича приводит к снижению общего веса конструкций, что означает возможность использования более простых типов фундамента.

При использовании отдельного слоя утеплителя, толщина стены в 2 кирпича (примерно 51 см = 2×25см(размер 1 кирпича)+1см(толщина шва)) становится достаточной практически для любых условий. В случае необходимости, может быть легко увеличена толщина именно изолирующего материала, а не кирпича, благодаря чему достигается весомая экономия.

Сравнение автоклавного газобетона и других строительных материалов по теплопроводности.

Теплопроводность — способность материала передавать тепло от более нагретой части к менее нагретой посредством взаимодействия молекул, из которых этот материал состоит. Коэффициент теплопроводности определяется количеством теплоты, которое проходит через образец материала за 1 ч, при градиенте температур на противоположных поверхностях этого образца в 1 градус по Цельсию. Теплопроводность автоклавного газосиликата в основном зависит от его плотности (определяем по марке D400, D500, D600), равновесной эксплуатационной влажности и качества макроструктуры (зависит от технологии изготовления блока).

Марка по плотностиD500D600
Нормируемая объемная плотность, кг/м З500600
Класс по прочности на сжатиеВ2,5В3,5
Коэффициент теплопроводности в сухом состоянии, λ [Вт/(м×°С)]0,120,14
Коэффициент теплопроводности при влажности 4%, λ [Вт/(м×°С)]0,1410,16
Коэффициент теплопроводности при влажности 5%, λ [Вт/(м×°С)]0,1470,183

Интересно посмотреть сравнительную таблицу по теплопроводности различных строительных материалов. Из нее мы видим, что газобетон проводит тепло в 4 раза хуже чем пустотный кирпич с ρ = 1200 кг/м З . А дом из газобетона даже с учетом наличия мостиков холода из-за армированных включений, будет такой же теплый как дом из деревянного сруба!

Читать еще:  Кирпич облицовочный вес размер

Таблица сравнения железобетона, газобетона, кирпичной кладки и гипсокартона по теплопроводности и плотности.

МатериалПлотность, кг/м ЗТеплопроводность, Вт/(м×С°)
Бетоны
Железобетон25002,04
Керамзитобетон12000,58
Пенобетон1000,37
Газобетон5000,12
Кирпичная кладка на цементно-песчаном растворе
Керамический кирпич:
сплошной18000,81
пустотный16000,64
пустотный14000,58
пустотный12000,52
Силикатный кирпич:
сплошной18000,87
пустотный14000,76
Глиняный кирпич:
обыкновенный0,56
Дерево и другие материалы
Сосна и ель (поперек волокон)5000,18
Гипсокартон8000,21

Газобетон является конструкционно- теплоизоляционным материалом, который обеспечивает необходимыми теплотехническими показателями при небольшой толщине стен, без дополнительного утепления.

Стены из автоклавного газобетона можно возводить однородные — нагрузка на фундамент меньше, монтаж легче, конструкция в целом дешевле! Единственное обстоятельство, которое важно учитывать: относительная влажность воздуха в помещениях не должна превышать 75%. При планировании использования газоблоков во влажных помещениях необходимо продумать способ гидроизоляции кладки либо гидроизоляционными материалами, либо гидрофобизирующими составами.

При выборе строительного материала компания рекомендует обратить внимание на то обстоятельство, что автоклавный газобетон занял позицию среди приоритетных стройматериалов не только за теплотехнические характеристики. Это надежный, экологичный, пожаростойкий материал. Он обладает хорошей воздухопроницаемостью, не поддерживает жизнедеятельность различных микроорганизмов и плесневых грибков — вкупе создавая в помещениях благоприятный для жизни микроклимат!

Характеристики теплопроводности разных видов кирпича

  • 1 Краткое описание закона Фурье
  • 2 Уровень показателя силикатных изделий
  • 3 Величина показателя красного кирпича
  • 4 Заключение

Водостойкость, морозоустойчивость, теплопроводность кирпича, а также другие характеристики этого материала делают его прочным и долговечным. Данный вид строительной продукции способен выдержать не только сильные нагрузки, но и долгое испытание временем в процессе эксплуатации конструкции.

Удержание тепла в доме зависит от материала стен. Кирпичные стены удерживают тепло на хорошем уровне.

Возможность материала пропускать через себя тепло независимо от температурных изменений, которым подвергается кирпич, — теплопроводность. Она, как и другие полезные свойства изделия, делает этот материал одним из лучших видов строительной продукции.

Краткое описание закона Фурье

Теплопроводность, как и водопоглощение или морозостойкость кирпича, играет очень важную роль при выборе строительного материала, необходимого для возведения несущих стен, каких-либо облицовочных работ, кирпичной кладки при устройстве межкомнатных перегородок. Изделие не только позволяет создать неповторимый стиль, но и обеспечивает тепло и уют в доме. Этот фактор является важным при его выборе.

Закон Фурье при расчете теплопроводности.

Показатели, позволяющие анализировать тепловой поток, находятся под влиянием различных температур. Это объясняется постепенным переходом тепловой энергии из горячего состояния в холодное. Если температура довольно высокая, то данный процесс можно наблюдать открыто. При высокоинтенсивной передаче тепла наблюдается градация в уровне температур.

Чтобы глубже исследовать теплопроводность и тепловой поток, учитывая площадь поперечного сечения, ученый Фурье открыл закон, который показывает, по каким причинам материалы способны прекрасно задерживать тепло, улучшая свою изоляцию. Степень переноса теплоты может быть обозначена специальным коэффициентом (КТ) — λ.

Значение тепловой энергии измеряется в таких единицах, как ватт, сокращенно Вт. Этот показатель способен уменьшать свой уровень на 1°С в результате прохождения расстояния в 1 мм при температурном различии. В процессе лабораторных исследований Фурье было обнаружено, что чем меньше коэффициент теплопроводности, тем выше уровень сохранения тепла строительным материалом, поэтому его можно отнести к более теплому.

Данный показатель, который важен в строительстве, в наибольшей степени обусловлен плотностью строительной продукции. Если уровень значения плотности материала понижается, это приводит к снижению его теплового показателя. Для плотных тяжелых экземпляров характерно повышенное значение коэффициента.

Если строительный материал обладает более легким весом и меньшей прочностью, то его величина является небольшой. Коэффициент, который зависит от плотности строительного материала, находится под влиянием таких характеристик, как водопоглощение кирпича и его морозостойкость.

Уровень показателя силикатных изделий

Сфера применения силиката зависит от его качественных характеристик. Сюда входят теплопроводность, водопоглощение и морозостойкость кирпича. Силикат обладает повышенной склонностью к водопоглощению, поэтому он не используется при кладке фундаментов, подвалов или цоколей, так как эти сооружения имеют высокий уровень влажности.

Сухой силикатный материал обладает теплопроводностью (Т), составляющей 0,8 Вт/м*К. Керамические изделия имеют более высокую величину данного параметра, поэтому Т кладки сооружений из них составляет 0,9 Вт/м*К, что на 0,2 Вт/м*К больше, чем в первом случае. Показатель, составляющий 0,35-0,70 Вт/(м°С), а также средняя плотность сухого силикатного кирпича находятся в линейной зависимости, поэтому данная величина не зависит от количества и расположения пустот.

Читать еще:  Керамический кирпич пятый элемент

Силикатные изделия имеют значение теплового показателя переноса энергии меньше, чем керамические, поэтому они применяются для отделки фасадов. Для получения теплоэффективных стен применяется многопустотный силикатный кирпич, а также камень. Их плотность не более 1450 кг/м³. Эффект достигается только при аккуратном ведении кирпичной кладки, предполагающей использование нежирного кладочного раствора, который наносится тонким слоем и имеет плотность не более 1800 кг/м³. Раствор не должен заполнять пустоты в изделии.

Величина показателя красного кирпича

Для полнотелого красного кирпича характерна самая низкая способность к сохранению тепла, составляющая 0,6-0,8 Вт/м*К. По этой причине возводить энергоэкономичные сооружения целесообразно из пустотелых изделий. Их показатели теплопроводности намного ниже и составляют около 0,56 Вт/м*К.

Теплопроводность кирпича зависит не только от производственной технологии. Этот показатель находится в зависимости от множества факторов: влажности, объемного веса, пористости (размера пор материала). Достаточная плотность и пустотность этого изделия, составляющая 40-50%, соответствует показателю Т, равному 0,2-0,3 Вт/м*К. При этом толщина стен должна быть значительно меньше, чем в постройках из силиката.

Коэффициент теплопроводности, единица измерения которого исчисляется в ваттах, определяет количество тепла, способного проникнуть через кирпичную стену, имеющую метровую толщину.

Разница температуры должна составлять в 1°C по обе стороны стены. Чем выше данное значение, тем хуже характеристики коэффициента.

Наиболее важным свойством шамотного кирпича является тепловой эффект, что следует учитывать в процессе кладки печей и каминов. Чтобы обеспечить тепло в жилье, необходимо выбирать строительные материалы, обладающие низким коэффициентом теплопроводности, единицей измерения которого являются Вт/м°С или Вт/м*К.

Заключение

Показатель указывает на то, до какой степени может сохраняться тепло кирпичных стен сооружения. Это свойство объясняет, как данный материал не только проводит, но и передает тепло. Определить этот показатель можно с помощью коэффициента теплопроводности кирпича, который был получен на основе лабораторных исследований ученых.

Про кирпич

Сайт о видах и марках кирпича, его применении в строительстве, видах кирпичных кладок, о заводах-изготовителях кирпича.

среда, 6 ноября 2013 г.

Теплопроводность кирпича

Теплопроводность кирпича

Самым древним и потребляемым строительным материалом из всех имеющихся, является кирпич. Множество величественных монументов и архитектурных построек были возведены именно из кирпича. Этот материал популярен также благодаря своим декоративным элементам и широко применяется для различных видов кладок — узорных, глазурованных, лекальных, фигурных.

Наравне с красивым оформлением фасадов теплопроводность кирпича способствует и повышению свойств теплозащиты. Эта особенность позволяет кирпичу проводить тепло через собственный же объем. Нужно принимать во внимание, что коэффициент теплопроводности достигается количеством объема, поэтому при высоком его уровне строение быстрее нагревается или остывает. Это позволяет в летний период спастись от жары, в зимний — от холода.

Высокому показателю теплопроводности способствует химический состав кирпича, влажность, температурное состояние материала и плотность, определяющаяся пористостью кирпича. При этом нельзя забывать, что влажность сырья также является причиной теплопроводности, т. е. влажный кирпич проводит тепло быстрее, чем сухой.

К примеру коэффициент теплопроводимости силикатного полнотелого кирпича в сухом виде составляет порядка 0,56 Вт/(м*c)*, в то время как кладка из него — около 0,69 Вт/(м*c)*. Кладка из кирпича керамического имеет теплопроводность — около 0,98 Вт/(м*c)*. Как видим, теплопроводность силикатного кирпича меньше, чем керамического, а это значит, что они дольше могут удерживать тепло. теперь понятно, почему для утепления и оформления фасадов зданий предпочтительней использовать силикатный кирпич — ведь он обладает свойствами теплоизоляции.

Прежде чем приступить к строительным работам, нужно ознакомиться с данными теплопроводности всех видов кирпича, измеряемой в Вт/(м*c)*:

— кирпич силикатный с пустотами — 0,66;
— щелевой силикатный кирпич — 0,4;
— полнотелый керамический — 0,5 — 0,8;
— керамический кирпич с пустотами — 0,57;
— кирпич щелевой керамический — 0,34 — 0,43;
— кирпич поризованный — 0,22;
— клинкерный вид — 0,8 — 0,9;
— шлаковый вид — 0,58;
— кремнеземный вид кирпича — 0,15;
— кирпич сплошной — 0,6.

Подобрав материал, необходимо рассчитать теплосопротивление — меру, которая обратна теплопроводности. Если материал хорошо проводит тепло, следовательно сопротивляется ему плохо и обладает высокой теплопроводностью, но низким уровнем теплосопротивления. Для наилучшего сохранения тепла, при строительстве специалистами рекомендуется использование материалов с низким уровнем теплопроводности.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector