4builders.ru

Строй журнал
4 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Устойчивость откоса глинистого грунта

Основные причины потери устойчивости откосов и склонов

Основными причинами потери устойчивости откосов и склонов являются:

— устройство недопустимо крутого откоса или подрезка склона, находящегося в состоянии, близком к предельному;

— увеличение внешней нагрузки (возведение сооружений, складирование материалов на откос или вблизи его бровки);

— изменение внутренних сил (изменение удельного веса грунта при изменении его влажности);

— неправильное назначение расчетных характеристик прочности грунта или снижение его сопротивления сдвигу за счет повышения влажности и др причин;

— проявление гидродинамического давления, сейсмических сил, различного рода динамических воздействий ( движение транспорта, забивка свай).

16. Процесс образования грунтов. роль среды в формировании грунтов

Физико-географическая среда оказывает огромное влияние на формирование грунтов. При изучении грунтов с учетом их взаимодействия с окружающей средой и непрерывному изменению свойств большое внимание следует уделить генезису происхождения и условиям образования, а так же пациальности, тоесть физ географической обстановке образования грунтов. Существенное значение имеет процесс диагенеза – многовековое воздействие окружающей среды (цементация, выщелачивание). Явления диагенеза могут создать условия способствующие изменению структуры и состава грунтов, а при давлении и температуре приводят к метаморфизму, то есть полному видоизменению рыхлых пород, путем цементации и перекристаллизации их минеральных частиц.

Водопроницаемость грунтов

Водопроницаемость – свойство водонасыщеного грунта под действием разности напоров пропускать через свои поры сплошной поток воды.

Напор в любой точке движущегося потока воды Н определяется выражением: Н=p/yw+z+v 2 /(2g)=p/yw+z,

Где p/yw – пьезометрическая высота (р – давление в воде; yw – удельный вес воды); z – высота рассматриваемой точки над некоторой горизонтальной плоскостью сравнения; v 2 /(2g) – скоростной напор (v – скорость движения воды в потоке; g – ускорение свободного падения).

Скорость фильтрации, учитывая сложную неоднородную структуру порового пространства грунтов и наличие пленок связанной воды у частиц глинистых грунтов, не может быть определена через расход воды и площадь сечения элементарной трубки грунта.

Зерновой состав грунтов.

Гранулометрический (зерновой) состав грунта следует определять по весовому содержанию в нем частиц различной крупности, выраженное в процентах по отношению к весу сухой пробы грунта, взятой для анализа.

Упрощенная зерновая классификация грунтов

ГрунтыСодержание глинистых частиц в % по весуДиаметр шнура из грунта при пределе раскатывания в мм
глинаБольше 30Менее 1
суглинок30-101-3
супесь10-3Более 3
песокМенее 3Не раскатывается
Пылеватые грунтыЕсли в грунте содержится пылеватых частиц, больше чем песчаных, то к названию грунта прибавляется слово «пылеватый»

Практические методы расчета осадок оснований фундаментов во времени.

Методы прогноза развития деформаций грунтов во времени основаны на теории фильтрационной консолидации, в основу которой положены следующие предпосылки:

— скелет грунта рассматривается как упругая пористая среда, действует компрессионный закон уплотнения Δε=mVΔσ;

— поровая вода абсолютно несжимаемая;

— отжатие воды из пор грунта подчиняется закону ламинарной фильтрации Дарси v=ki;

— внешняя нагрузка уравновешивается суммой напряжений в скелете грунта (эффективное напряжение) σz и в поровой воде uv.

Основные расчетные случаи.

Случай 0 – одномерное уплотнение слоя грунта под действием сплошной нагрузки.

Случай 1 – сжимающие напряжения увеличиваются с глубиной по закону треугольника. Случай соответствует уплотнению свежеотсыпанного слоя водонасыщенного грунта под действием собственного веса.

Случай 2 – сжимающие напряжения уменьшаются с глубиной по закону треугольника. Случай соответствует виду эпюры дополнительных напряжений по оси фундамента, принятой в методе эквивалентного слоя.

Виды грунтовых отложений

В зависимости от участия в формировании грунтовой толщи тех или иных агентов выветривания, различают элювиальные, делювиальные, аллювиальные, дельтовые, озерно-ледниковые, эоловые и морские отложения.

Элювиальные отложения состоят из продуктов выветривания горных пород, залегающих на месте своего первоначального образования. По составу они близки к исходной материнской породе. Вследствие значительной пористости и неоднородности состава элювий дает неравномерную осадку под сооружением. Однако, при плотном, однородном сложении и прочной коренной породе элювий может служить надежным основанием сооружений.

Продукты выветривания переносятся водными потоками, ветром и ледниками, образуя делювиальные, аллювиальные и дельтовые отложения.

Делювиальными называются отложения водных потоков, перемещаемые вне постоянных русел под действием силы тяжести дождевыми и снеговыми водами по склонам той же возвышенности, где образовались. Такие отложения представляют собой рыхлые неустойчивые, часто подвергающиеся оползанию образования, неоднородные по своему составу и залегающие на склонах разной мощности, увеличивающейся к подножию склона.

Аллювиальные отложения – это отложения водных потоков, переносимые постоянными водными потоками (ручьями, реками и пр.) на значительные расстояния от места их первоначального залегания.

Дельтовыми называются отложения водных потоков, образуемые при впадении постоянных потоков в водные бассейны.

Коэффициент устойчивости

Коэффициент устойчивости – это отношение моментов сил, удерживающих откос в состоянии равновесия, к моменту сил, сдвигающих откос:

(19)

Для расчетов этих сил призму ABC разделяют на несколько отсеков. Силы взаимодействия в вертикальных плоскостях между отсеками не учитываются. Вес грунта в откосе раскладывается на две составляющие: касательные (Тi), направленные вдоль линии скольжения, и нормальные (Ni) перпендикулярные направле­нию касательных напряжений. При расчете учитываются следующие основные параметры:

1) физико-механические свойства:

g – удельный вес, кН/м 3 ;

j – угол внутреннего трения, град;

с – удельное сцепление, кПа;

2) геометрические параметры откоса:

H – высота откоса, м;

Ai – площадь блока, м 2 ;

li – длина дуги скольжения, м;

3) силовые параметры:

Qi – вес блока, кН/м;

Ti – сдвигающая сила, кН/м;

Ni – нормальная сила, кН/м;

Fi – сила трения грунта о грунт, кН/м.

Откос считается устойчивым, если h/1,2.

Влияния Электролитов

Водопроницаемость глин при прочих равных условиях (одинаковый минералогический состав, дисперсность, плотность) в значительной степени зависит от состава и концентрации электролитов в фильтрующейся воде и состава обменных катионов. Исследования, выполненные В. С. Шаровым, Б. В. Дерягиным и др., показывают, что проницаемость глин при фильтрации пресной воды значительно меньше, чем при фильтрации растворов электролитов с концентрацией больше 0,1—1 н. Увеличение коэффициента фильтрации при фильтрации электролитов происходит в наибольшей степени при концентрациях до 2—3 нормалей. Так, при фильтрации раствора NaCl с концентрацией 10% через монтмориллонитовую глину коэффициент фильтрации увеличился в 2,7 раза по сравнению с коэффициентом фильтрации с водой. При дальнейшем увеличении концентрации NaCl наблюдалось снижение коэффициента фильтрации, так как вязкость фильтрующегося раствора заметно возрастала. Увеличение Кф при повышении концентрации до 10% объясняется исключительно сжатием диффузных слоев (слоев рыхлосвязанной воды) вокруг глинистых частиц, в результате чего увеличивается эффективный диаметр пор. Водопроницаемость глин по отношению к электролитам в сильной степени зависит от вида глинистого минерала. По степени влияния электролитов на изменение проницаемости минералы располагаются в следующем порядке (в порядке убывания влияния электролитов): монтмориллонит, гидрослюда, каолинит, палыгорскит. Влияние концентрации фильтрующегося через грунт электролита уменьшается по мере уменьшения количества глинистых частиц.

Читать еще:  Финишная грунтовка стен перед поклейкой обоев

Расчет местной устойчивости откосов из глинистых грунтов

В отличие от определения общей устойчивости насыпи по п. настоящих указаний расчет местной устойчивости откосов осуществляется без учета влияния нагрузки от верхнего строения пути и подвижного состава применительно к схемам рис. 3 (хорда АБ кривой скольжения ) и рис. 4 (хорда ДБ кривой скольжения ). В практике нарушение местной устойчивости откосов с прохождением срыва вблизи торцов шпал наблюдаются в подавляющем большинстве случаев нарушения устойчивости насыпей.

Расчет местной устойчивости откоса производится в следующем порядке.

Для смещенных координатных осей Xm-Ym (рис.3 и 4) последовательно рассчитываются:

— координата подошвы насыпи

,

— угол наклона хорды

,

,

— по значению задается максимальное заглубление кривой скольжения от середины хорды

,

— определяется радиус кривой скольжения

,

— определяется величина половины центрального угла кривой скольжения

,

определяются координаты центра кривой скольжения

,

.

При расчете местной устойчивости откоса сохраняются разделение блока Н0 отсеки, принятие при определении общей устойчивости насыпи в пределах всей ее высоты по схеме 1, и высоты свободного откоса при наличии бермы по схеме 2. В связи с перерасчетом координат изменяются номера отсеков, значение X и все зависящие от них величины :

,

,

.

Рис. 5. Схема к определению координат , при расчете местной устойчивости откоса

Значение сохраняется одинаковым для оценки общей и местной устойчивости по схеме и уменьшается на высоту бермы по схеме 2 с учетом изменения номеров отсеков.

Порядок проведения и пример расчета местной устойчивости приведен ниже. Пример продолжает условия определения прочности грунтов по разд.2 и оценки общей устойчивости насыпи.

Для оговоренных выше условий определяем:

м,

,

м,

м (принимает 1.1 м),

м,

,

м,

.

Далее расчет произведен в табличной форме (табл. 4).

Порядок проведения и пример расчета местной устойчивости откоса насыпи.

№№Показатели №№отсековПорядок определения назначаются№№ отсеков
Ширина отсеков1,94,54,54,54,5
Ордината середины 0,954,158,6513,1517,65
Угол 34,1530,1824,8619,7514,80
Отметка верхнего откоса См. таблицу 38,756,253,751,25
Отметка кривой скольжения 8,116,103,761,910,51
Высота отсека 1,892,652,491,840,74
Вес отсека Qi 7,223,822,416,66,7
Сдвигающая сила , м 4,012,09,45,61,7
Сцепление С(h),т/м 2 0,680,9310,8770,6670,370
Удерживающая сила 1,64,84,43,21,7
Коэффициент трения 0,2450,2500,2490,2450,238
Удерживающая сила 1,55,15,13,81,5

Аналогично оценке общей устойчивости данные расчета используются для определения показателей местной устойчивости К и К соответственно для нормализованной и экстремальной ситуации.

Для приведенного примера:

, .

Значения К и К используются при определении необходимых мероприятий по усилению местной устойчивости откосов.

Коэффициент устойчивости откоса и склона по нормам СП

Нормирование коэффициент устойчивости откосов и склонов приведено в следующих нормативных документах:

  • СП 22.13330.2016 Основания зданий и сооружений. Актуализированная редакция СНиП 2.02.01-83*;
  • СП 116.13330.2012 Инженерная защита территорий, зданий и сооружений от опасных геологических процессов. Основные положения. Актуализированная редакция СНиП 22-02-2003;
  • ОДМ 218.2.078-2016 Методические рекомендации по выбору конструкции укрепления откосов земляного полотна автомобильных дорог общего пользования.

Выделим положения данных нормативных документов, которые касаются коэффициента устойчивости откоса и склона.

Согласно СП 22.13330.2016:

п.5.1.9 Проверку оснований по несущей способности следует проводить в случаях, если:

б) сооружение расположено на откосе или вблизи откоса;

Проверку оснований по несущей способности в случаях, приведенных в перечислениях а, б и в, следует проводить с учетом конструктивных мероприятий, предусмотренных для предотвращения смещения проектируемого фундамента.

Если проектом предусматривается возможность возведения сооружения непосредственно после устройства фундаментов до обратной засыпки грунтом пазух котлованов, следует проводить проверку несущей способности основания, учитывая нагрузки, действующие в процессе строительства.

п.5.7.2 Расчет оснований по несущей способности проводят исходя из условия

где F — расчетная нагрузка на основание, кН, определяемая в соответствии с требованиями п.5.2 СП 22.13330.2016;

Fu — сила предельного сопротивления основания, кН;

γc — коэффициент условий работы, принимаемый:

      • для песков, кроме пылеватых — 1,0;
      • для песков пылеватых, а также глинистых грунтов в стабилизированном состоянии — 0,9;
      • для глинистых грунтов в нестабилизированном состоянии — 0,85;
      • для скальных грунтов:
      • невыветрелых и слабовыветрелых — 1,0
      • выветрелых — 0,9
      • сильновыветрелых — 0,8;

γn — коэффициент надежности по ответственности, принимаемый равным 1,2; 1,15 и 1,10 соответственно для сооружений геотехнических категорий 3, 2 и 1.

Примечание — В случае неоднородных грунтов средневзвешенное значение принимают в пределах толщины b1+0,1b (но не более 0,5b) под подошвой фундамента, где b — сторона фундамента, м, в направлении которой предполагается потеря устойчивости, а b1 =4 м.

Согласно СП 116.13330.2012:

п.5.1.6 При выборе защитных мероприятий и сооружений и их комплексов следует учитывать виды возможных деформаций склона (откоса), уровень ответственности защищаемых объектов, их конструктивные и эксплуатационные особенности.

Виды противооползневых и противообвальных сооружений и мероприятий следует выбирать на основании расчетов общей и местной устойчивости склонов (откосов), т.е. устойчивости склона (откоса) в целом и отдельных его морфологических элементов, данных мониторинга.

Читать еще:  Хорошая грунтовка для фасадных работ

п.5.2.1 Противооползневые и противообвальные сооружения и их конструкции проектируются по методу предельных состояний. При этом расчеты производятся по двум группам предельных состояний, которые включают:

первая (полная непригодность сооружения к дальнейшей эксплуатации):

      • расчеты общей прочности и устойчивости системы сооружение — грунтовый массив (откос, склон);
      • расчеты прочности и устойчивости отдельных элементов сооружения, разрушение которых приводит к прекращению эксплуатации сооружения;
      • расчеты перемещений сооружений и конструкций, от которых зависит прочность или устойчивость сооружения в целом, а также прочность или устойчивость объектов на защищаемой территории и др.;

вторая (непригодность к нормальной эксплуатации):

      • расчет оснований, откосов, склонов и элементов конструкции, разрушение которых не приводит все сооружение в непригодное состояние, на местную прочность;
      • расчеты по ограничению перемещений и деформаций сооружений, прилегающих территорий и объектов на них расположенных;
      • расчеты по образованию или раскрытию трещин и строительных швов.

5.2.2 Расчет противооползневых и противообвальных сооружений, проектируемых откосов и склонов производится исходя из условия

где F— расчетное значение обобщенного силового воздействия на сооружение или его конструктивные элементы (сила, момент, напряжение), определяемое в соответствии с СП 20.13330, деформации (смещения) или другие параметры, по которым производится оценка предельного состояния;

Ψ — коэффициент сочетания нагрузок, принимающий значения:

При расчетах по предельным состояниям первой группы:

      • для основного сочетания эксплуатационного периода Ψ = 1,0;
      • то же, для строительного периода и ремонта Ψ = 0,95;
      • для особого сочетания нагрузок, в том числе сейсмической нагрузки на уровне проектного землетрясения (ПЗ) годовой вероятностью 0,01 Ψ =0,95;
      • прочих нагрузок годовой вероятностью 0,001 и максимального уровня расчетного землетрясения (МРЗ) Ψ =0,90.

При расчетах по предельным состояниям второй группы на основное сочетание нагрузок Ψ = 1,0;

R — расчетное значение обобщенной несущей способности, прочности, деформации (смещения) или другого параметра, устанавливаемого соответствующими нормами проектирования в зависимости от типа конструкции и используемых материалов с учетом коэффициентов надежности по материалу γm и (или) грунту γg ;

γn — коэффициент надежности по ответственности сооружения:

При расчетах по предельным состояниям первой группы в зависимости от уровня ответственности, согласно ГОСТ Р 54257:

При расчетах по предельным состояниям второй группы γn = 1,00.

При расчетах устойчивости склонов, сохраняемых в естественном состоянии, γn принимается как для сооружения или территории, которые могут перейти в непригодное состояние при разрушении склона.

При расчетах природных склонов γn =1,0;

γd — коэффициент условий работы, учитывающий характер воздействий, возможность изменения свойств материалов со временем, степень точности исходных данных, приближенность расчетных схем, тип сооружения, конструкции или основания, вид материала и другие факторы; устанавливается в диапазоне

нормами проектирования отдельных видов сооружений.

п.5.2.3 Расчет устойчивости проектируемых склонов и откосов в соответствии с зависимостью 5.1 допускается выполнять только для простейших форм поверхности скольжения, отделяющей призму обрушения от неподвижного массива грунта (в виде отрезка прямой или окружности). В этом случае зависимость 5.1 записывается в виде:

где kst = γn ·Ψ/γd — нормированное значение коэффициента устойчивости склона (откоса);

kst — расчетное значение коэффициента устойчивости, определяемое как отношение удерживающих сил (моментов) R , действующих вдоль линии скольжения, к сдвигающим силам (моментам) F .

В общем случае расчеты устойчивости выполняются при произвольных формах поверхности скольжения. При этом условие 5.1 принимает вид

В этом случае под коэффициентом устойчивости kst понимают число, на которое следует разделить исходные прочностные характеристики грунта tgφ и c , чтобы ограниченный данной пробной поверхностью скольжения массив пришел в состояние предельного равновесия.

При этом, соотношение между нормальными σn и касательными τnt напряжениями по всей поверхности скольжения, соответствующее предельному состоянию призмы обрушения, отвечает условию

где φI = arctg(tgφ /kst) и cI =c/kst — значения угла внутреннего трения и удельного сцепления грунта, при которых наступает сдвиг грунта, соответственно.

Коэффициент устойчивости склона (откоса) находят как минимальное значение kst по всем возможным пробным поверхностям скольжения.

Нахождение коэффициента устойчивости склона (откоса) может производиться как с использованием традиционных методов теории предельного равновесия (с разбиением призмы оползания на отсеки или без оного), так и упругопластическими расчетами методом конечных элементов с использованием метода снижения прочностных характеристик.

Согласно ОДМ 218.2.078-2016:

п.6.4.2 В общем случае, надежность конструкции по критериям прочности и устойчивости считается обеспеченной при выполнении условия

где F — расчетное значение обобщенного силового воздействия (сила, момент, напряжение), деформации или другого параметра, по которому производится оценка предельного состояния;

R — расчетное значение обобщенной несущей способности, деформации или другого параметра конструкции;

ηс — коэффициент сочетания нагрузок для основного сочетания нагрузок и воздействий в период нормальной эксплуатации — 1,00; то же — для периода строительства и ремонта — 0,95;

γf — коэффициент надежности по нагрузке по таблице 5;

γc — коэффициент условий работы, учитывающий характер воздействий, возможность изменения свойств материалов во времени, степень точности исходных данных и прочие факторы, при расчете элементов на нагрузки строительного периода принимается γc=1,0, при расчете на нагрузки эксплуатационного периода γc=1,15;

γn — коэффициент надежности по ответственности сооружения (при расчетах по предельным состояниям I группы γn=1,15, II группы γn=1,0).

Коэффициенты надежности следует принимать с учетом требований ГОСТ 27751, СП 20.13330.2011, СП 38.13330.2012, СП 58.13330.2012, СП 116.13330. 2012.

Указанные значения коэффициентов надежности могут быть изменены для случаев установленных нормативными документами на проектирование отдельных видов элементов конструкций или в соответствии с Техническим заданием на проектирование.

Таблица 5 — Значения коэффициентов надежности по нагрузке (ОДМ 218.2.078-2016)

Коэффициент надежности по нагрузке γf

Собственный вес элементов конструкций и материалов 2)

Напорное давление, вызванное сезонными и суточными колебаниями уровней, подпором грунтовых вод

Давление воды непосредственно на поверхности сооружения и основания, силовое воздействие фильтрующей воды; волновое давление; поровое давление

Читать еще:  Токопроводящая грунтовка для мдф

1) Коэффициенты перегрузки, указанные в скобках, принимают в тех случаях, когда возможное уменьшение нагрузки ухудшает работу конструкции (при расчетах на опрокидывание, сдвиг).
2) Коэффициент надежности по нагрузке γf следует принимать равным единице для всех грунтовых нагрузок и собственного веса сооружения, вычисленных с применением расчетных значений характеристик грунтов (удельного веса и характеристик прочности) и материалов (удельного веса бетона и др.), определенных в соответствии со строительными нормами и правилами на проектирование оснований и отдельных видов сооружений.
3) В таблице приведены коэффициенты надежности по нагрузке для расчетов по I группе предельных состояний.

Строй-справка.ру

Отопление, водоснабжение, канализация

Навигация:
Главная → Все категории → Реконструкция автомобильных дорог

Во II дорожно-климатической зоне на дорогах, проложенных в условиях сильно пересеченного рельефа, часто возникают сплывы откосов глубоких выемок из-за выклинивания грунтовой воды или водонасыщения грунта при промерзании и оттаивании.

Радикальные меры, полностью гарантирующие устойчивость откосов, в сложных случаях требуют выполнения инженерно-геологической съемки и последующей разработки соответствующего проекта.

Однако во многих случаях, как показал многолетний опыт эксплуатации дорог, при реконструкции колено с успехом ограничиться повышением устойчивости откосов путем проведения сравнительно несложных инженерных мероприятий.

Если поверхностные деформации на откосах не распространяются на большую глубину, то их засыпают грунтом земляного полотна.

Предварительно бульдозером нарезают на откосе борозды с учетом глубины сплыва и укладывают грунт горизонтальными слоями, тщательно уплотняя вибротрамбовкой.

В местах выхода на откосы выклинивающихся родников откос снизу подрезают, устраивая, в зависимости от глубины выемки полку шириной 1—3 м, и укладывают трубчатую дрену диаметром 0,15 м с обратным фильтром из чистого морозостойкого щебня или гравия. Перфорированную трубу целесообразно предварительно обернуть синтетическим нетканым материалом или стеклотканью.

Место вырезки грунта засыпают морозо- и водоустойчивыми материалами; гравием, камнем, щебнем, металлургическим шлаком и др. Из трубы делают вывод в понижения местности.

В последние годы успешно применяют новые конструкции перехватывающих дренажей из сплошных гофрированных пластмассовых или алюминиевых вертикальных водопроницаемых листов, в нижней части которых расположена дренажная труба. Они могут обеспечить осушение массива грунта на высоту до 3 м. В этом случае отсутствует необходимость в устройстве с низовой стороны водонепроницаемого экрана, что значительно снижает стоимость устройства дренажа.

Применение пластмассовых листов существенно усиливает процесс осушения земляного полотна.

Производительность работ повышается при этом не менее чем в 2,5—3 раза из-за отсутствия необходимости в устройстве обратных фильтров.

Повышению устойчивости верхней части откоса глубокой выемки обычно способствует устройство перехватывающего дренажа глубиной до 3 м на расстоянии не менее 5 м от ее бровки.

В случаях полного нарушения устойчивости откосов выемок со сплывом грунта в боковые канавы и даже на обочины рекомендации по их укреплению разрабатывают индивидуально после обстоятельных инженерно-геологических обследований.

Откосы насыпей высотой более 6 м, возведенных из иловатых грунтов, аргиллитовых или глинисто-сланцевых обломков, мергелей и других аналогичных горных пород, очень часто деформируются. Особенно часто деформации наблюдаются с низовой стороны земляного полотна по отношению к склону местности.

Основной причиной нарушения устойчивости откосов насыпей являются низкая водо- и морозостойкость, а также высокая дробимость горных пород, из которых они возведены.

Чтобы повысить устойчивость откосов, сложенных нз легко выветривающихся горных пород, с низовой стороны устраивают упорные призмы из галечника, гравия или гравелистого песка.

Повышению устойчивости способствует и уширение насыпи в низовую сторону.

Для предупреждения заиливания упорной призмы грунтом уширяемой насыпи желательно между ней п призмой закладывать противозапливающую прокладку из стеклоткани, полимерного материала типа «бидим» и т. п.

Крутизна наружного откоса призм, отсыпаемых из каменных материалов, не должна превышать 1 : 1,3.

Рис. 1. Схема повышения устойчивости откоса выемки при выклинивании грунтовых вод:
1 — гравий или щебень; 2 — травяной покров; 3 —трубчатая дрена; 4 — направление движения выклинивающихся вод

Рис. 2. Дренаж с сердечником в виде водопроводящих «каналов», соединенных с трубчатой дреной:
а — дренаж с сердечником из тонкого (0,5— I мм) гофрированного материала; б —разрез гофрированного сердечника с прямоугольными или треугольными ребрами; в — разрез дрены с просечно-вытяжным пластмассовым или металлическим сердечником; г — вид сверху на сердечник; 1 — сердечник с водопроводящими каналами; 2 — минерально-волокнистый фильтрующий материал; 3 — трубчатая дрена; 4 — водоприемные отверстия; 5—вода, стекающая по дренажной трубе, (стрелки указывают направление движения воды)

Рис. 3. Схема перехватывающего глубокого дренажа для повышения устойчивости верхней части откоса:
1 — нагорный дренаж; 2 — трубчатая дрена; 3 — обваловка откоса; 4 — место возможного сползания грунта; 5—травяной покров; 6 — подлотковый дренаж

Рис. 4. Пример повышения устойчивости низового откоса высоких насыпей устройством упорных призм:
а — из крупноскелетных материалов; б — из глинистых практически непроницаемых грунтов; 1 — упорная призма; 2—противозаиливающий слой; 3 — искусственный травяной покров; 4 — врезка в косогор

Иногда в целях снижения стоимости строительства призмы отсыпают из непылеватых глинистых грунтов. Наружный откос призмы, отсыпаемой из глинистых грунтов, должен быть не круче 1 : 2,5.

Для стока просачивающейся через насыпь воды подошву призмы планируют в сторону падения косогора, придавая ей уклон 10—20%.

Но если грунт насыпи за период эксплуатации стал водонепроницаемым и призму также осыпают из практически водонепроницаемых грунтов, то ее врезают уступами в косогор с уклоном до 100%о в сторону оси насыпи.

Размеры упорных призм определяют расчетом. Повышение устойчивости низовых откосов упорными призмами или контрбанкетами широко применяют в СССР, особенно в северных районах страны.

На откосах упорных призм и насыпей, устроенных из крупнообломочных горных пород, укладывают защитный слой водонепроницаемого грунта толщиной не менее 0,6 м. При использовании грунтов, обработанных вяжущими материалами, в том числе и местными малоактивными, толщину защитного слоя можно уменьшить до 0,15—0,2 м.

Навигация:
Главная → Все категории → Реконструкция автомобильных дорог

0 0 голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты