4builders.ru

Строй журнал
14 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Рассчитать удельную теплоемкость кирпича массой 3 кг

Объёмная теплоёмкость

Объёмная теплоёмкость характеризует способность данного объёма данного конкретного вещества увеличивать свою внутреннюю энергию при изменении температуры вещества (подразумевая отсутствие фазового перехода). Равна отношению теплоёмкости данного образца вещества C к его объему V :

c ′ = C / V

или иначе говоря, это теплоёмкость единицы объёма данного вещества. Подразумевается, что вещество однородно. Используется понятие объёмной теплоёмкости главным образом применительно к твёрдым телам и жидкостям, поскольку они имеют достаточно слабо изменяющуюся в зависимости от изменения внешних условий плотность. Для газа плотность очень сильно меняется в зависимости от температуры и давления, что означает, что даже вполне конкретный газ не имеет определённой объёмной теплоёмкости, то есть даже определённому газу определённое значение объёмной теплоёмкости можно приписать лишь при строго определённых давлении и температуре; на практике же вследствие этого понятие объёмной теплоёмкости применяется достаточно редко.

Объёмная теплоёмкость отличается от удельной теплоёмкости, которая характеризует способность единицы массы данного вещества увеличивать свою внутреннюю энергию при изменении температуры. Можно преобразовать удельную теплоёмкость в объёмную путём умножения удельной теплоёмкости на плотность вещества: [1]

c ′ = ρ c .

Дюлонг и Пти в 1818 году предсказали, что величина ρc [2] должна быть постоянной для всех твёрдых веществ. В 1819 году они обнаружили, что наибольшим постоянством обладали теплоёмкости твёрдых тел, определяемые предполагаемым весом атомов вещества (закон Дюлонга — Пти). Это теплоёмкость, приходящаяся на единицу атомного веса, которая близка в тому, чтобы быть постоянной для твёрдых тел. Иными словами, теплоёмкость, приходящаяся на один атом, а значит, и приходящаяся на единицу количества вещества, примерно постоянна для твёрдых тел. Теплоёмкость «на объёмной основе» фактически изменяется от примерно 1,2 до 4,5 МДж/(м³·K). Это варьирование объёмной теплоёмкости определяется различиями в физических размерах атомов (если бы все атомы имели одинаковый размер, то два типа теплоёмкости (молярная и объёмная) были бы эквивалентны). Для жидкостей объёмная теплоёмкость лежит в пределах от 1,3 до 1,9 МДж/(м³·K).

Для одноатомных газов (например, для аргона) при комнатной температуре и постоянном объёме, объёмная теплоёмкость равна около 0,5 кДж/(м³K).

При более высоких значениях объёмной теплоёмкости системе требуется больше времени для достижения термодинамического равновесия.

С объёмной теплоёмкостью связано понятие тепловой инерции материала, которая может быть определена по формуле:

I = k ρ c , >,>

k — теплопроводность, ρ — плотность материала, c — удельная теплоёмкость материала (произведение ρ c представляет собой объёмную теплоёмкость).

Расчет количества теплоты — Разноуровневые задания

Задания уровня “А”

1. Какое количество теплоты требуется для нагревания медной детали массой 200 г от температуры 15 °С до температуры 1015 °С?

2. Рассчитайте количество теплоты, необходимое для нагревания стального резца массой 400 г, если при закалке его нагрели от температуры 20 °С до температуры 1320 °С.

3. В алюминиевом чайнике массой 300 г нагревается 1,5 кг воды от температуры 20 °С до температуры 100 °С. Какое количество теплоты затрачено на нагревание воды? Чайника?

4. Определите, какое количество теплоты выделяет чугунный утюг массой 3 кг при охлаждении от температуры 70 °С до температуры 20 °С.

5. Какое количество теплоты выделяется при охлаждении кирпича массой 4 кг от температуры 30 °С до температуры 15 °С?

6. Определите, какое количество теплоты выделится при охлаждении 1,5 кг льда от 0 °С до температуры -5 °С.

7. Для нагревания бетонной плиты массой 250 кг от температуры 20 °С до температуры 40 °С потребовалось 4,4 ∙ 10 6 Дж теплоты. Какова удельная теплоемкость бетона?

8. При обработке алюминиевой детали на станке ее температура повысилась от температуры 20 °С до температуры 420 °С. Какое количество теплоты для этого потребовалось, если масса детали 500 г?

9. На сколько градусов охладится 2 кг горячей воды, отдав в окружающее пространство 504 кДж теплоты?

10. Какое количество теплоты теряет вода в пруду площадью 350 м 2 и глубиной 1,5 м при охлаждении на 5 °С?

11. Какова масса свинцовой детали, если для ее нагревания на 20 °С было затрачено 2800 Дж теплоты?

12. Чему равна удельная теплоемкость серебра, если для нагревания 20 г серебра на 85 °С потребовалось 425 Дж?

13. Определите массу стального молотка, если при его охлаждении от температуры 52 °С до температуры 20 °С, выделилось 300 кДж теплоты.

14. Для нагревания алюминиевой детали массой 100 г на 40 °С требуется 3680 Дж теплоты. Определите удельную теплоемкость алюминия.

15. Какое количество теплоты потребуется для нагрева 50 г льда на 5 °С?

16. Определите, какое количество теплоты выделяется при полном сгорании 6 кг торфа.

17. Рассчитайте, какое количество бензина необходимо сжечь для того, чтобы выделилось 230 кДж теплоты?

18. Какое количество теплоты выделится при полном сгорании 2,5 т каменного угля?

19. Чему равно количество теплоты, которое выделится при полном сгорании 100 г спирта?

20. Определите удельную теплоту сгорания керосина, если полном сгорании 50 г керосина выделяется 2,3 ∙ 10 6 Дж теплоты.

21. Определите, во сколько раз выделится большее количество теплоты при сгорании 5 кг бензина, чем при сгорании 5 кг торфа?

22. Какое количество воды можно нагреть на 50 °С теплотой, полученной при полном сгорании 10 г спирта?

23. Рассчитайте, массу дров, которые при полном сгорании выделяют такое же количество теплоты, как и 2 кг керосина.

24. При полном сгорании 5 кг топлива выделилось 6 ∙ 10 8 Дж теплоты. Определите удельную теплоту сгорания топлива? Что это за топливо?

25. Определите удельную теплоту сгорания авиационного керосина, если при полном сгорании 50 г этого топлива выделяется 3400 кДж теплоты?

Задания уровня “В”

1. Температура свинцовой детали массой 400 г равна 235 °С. Какое количество теплоты она передает окружающим телам, охлаждаясь до температуры 25 °С?

2. На сколько градусов остынет в питьевом баке емкостью 10 л кипяток, если он отдаст в окружающее пространство 2 МДж теплоты?

3. Рассчитайте массу железной детали, если для ее нагревание от температуры 20 °С до температуры 200 °С потребовалось 20,7 кДж теплоты?

4. Нагреется ли 2,5 л воды от температуры 20 °С до 100 °С, если ее внутренняя энергия увеличилась на 500 кДж?

5. При обработке холодом стальную деталь массой 540 г при температуре 20 °С поместили в холодильник, температура которого равна 80 °С. Какое количество теплоты выделилось при охлаждении детали?

6. Какое количество теплоты потребуется для нагревания на 18 °С воздуха в комнате, размеры которой 4м*5м х 2,5 м? Сколько воды можно нагреть этой же теплотой на такое же число градусов?

7. Определите, какое количество теплоты необходимо для нагревания 50 г растительного масла от температуры 15 °С до 115 °С, налитого в чугунную сковородку массой 1,25 кг.

8. Какое количество теплоты потребуется для нагревания 1,6 л воды в алюминиевом чайнике массой 750 г от температуры 20 °С до 80 °С?

9. Рассчитайте первоначальную температуру куска меди массой 1,2 кг, если при его охлаждении до температуры 20 °С выделилось 115 кДж теплоты.

10. Определите количество теплоты, которое потребуется для нагревания 15 л воды в железном котле массой 4,5 кг от температуры 15 °С до температуры 100 °С.

11. На нагревание кирпича массой 4 кг на 63 °С затрачено такое же количество теплоты, как и на нагревание той же массы воды на 13,2 °С. Какова удельная теплоемкость кирпича?

12. На сколько градусов нагреется медный брусок массой 2 кг, если он получит всю внутреннюю энергию, выделившуюся при остывании 200 г воды от температуры 100 °С до температуры 20 °С?

13. Алюминиевый бидон массой 10 кг вмещает 30 л молока. Какое количество теплоты потребуется для нагревания молока в бидоне от 0 °С до температуры 70 °С (пастеризация)?

14. Рассчитайте количество теплоты, которое потребуется для нагревания смеси, состоящей из 500 г воды и 100 г спирта от температуры 20 °С до температуры 60 °С.

15. Какое количество теплоты потребуется для нагревания 2,3 кг воды в медной кастрюле массой 1,6 кг от температуры 10 °С до температуры 100 °С?

16. Какое количество теплоты выделится при полном сгорании 300 г спирта? Сколько воды можно нагреть на 60 °С этим теплом?

17. Определите количество теплоты, которое выделится при полном сгорании топлива, полученного при смешивании бензина массой 2 кг и керосина массой 3 кг.

18. Каким количеством природного газа можно заменить 2 г водорода, чтобы получить такое же количество теплоты, что и при сжигании водорода?

19. Какое количество теплоты выделится при полном сгорании 1 т каменного угля. Каким количеством торфа можно заменить этот уголь?

20. Сколько бензина нужно сжечь, чтобы получить столько же энергии, сколько ее выделяется при полном сгорании 4 кг каменного угля?

21. На сколько градусов нагреется 5 кг воды при сжигании 25 г каменного угля, если считать, что вся энергия, выделенная при сгорании угля, пойдет на нагрев воды?

22. Какова масса дров, которая потребуется для нагрева 20 л воды от температуры 30 °С до температуры 100 °С? Потерями тепла пренебречь.

23. Определите, какое количество воды можно нагреть на 40 °С теплом, выделившимся при полном сгорании 10 г керосина, если не учитывать потерь тепла.

Читать еще:  Кому отдать бой кирпич

24. Какое количество каменного угля необходимо сжечь, чтобы получить такое же количество теплоты, как и при сгорании 3 л керосина?

25. Какое количество спирта потребуется, для того, чтобы нагреть 3 кг воды, взятой при температуре 20 °С до 100 °С. Считать, что вся энергия, полученная при сгорании спирта, пойдет на нагрев воды.

Задания уровня “С”

1. В алюминиевой кастрюле, масса которой 750 г, нагрели 3 л воды от температуры 15 °С до температуры 100 °С. Какое количество теплоты получила кастрюля и вода?

2. Какова начальная температура 800 г льда, если для повышения его температуры до 0 °С потребовалось увеличить его внутреннюю энергию на 33,6 кДж?

3. В сосуде смешали воду при температуре 10 °С и воду при температуре 90 °С. Через некоторое время в сосуде установилась температура 40 °С. Рассчитайте отношение массы холодной воды к массе горячей воды.

4. В железный душевой бак, масса которого 60 кг, налили холодной колодезной воды массой 100 л. В результате нагревания солнечным излучением температура воды повысилась от температуры 5 °С до температуры 35 °С. Какое количество теплоты получили бак и вода?

5. Какое количество теплоты требуется для нагревания 2 л молока в алюминиевой кастрюле массой 250 г от температуры 20 °С до температуры 100 °С?

6. Какое количество холодной воды, имеющей температуру 10 °С, требуется добавить для охлаждения 2,5 л воды, взятой при температуре 90 °С, до температуры 50 °С?

7. В воду массой 2 кг, взятую при температуре 10 °С, погрузили железо, нагретое до температуры 540 °С. Определите массу железа, если установившаяся температура стала равной 40 °С.

8. Смешали 25 л воды при 30 °С и 5 л воды при температуре 80 °С. Определите температуру образовавшейся смеси.

9. В воду с температурой 20 °С влили ртуть, масса которой равна массе воды. Определите начальную температуру ртути, если установившаяся температура равна 21 °С.

10. На сколько градусов нагреется 300 г воды, если она получит всю энергию, выделившуюся при остывании 2,5 кг меди от температуры 140 °С до температуры 40 °С?

11. В стеклянный стакан массой 100 г, имеющий температуру 12 °С налили 150 г воды при температуре 100 °С. При какой температуре установится тепловое равновесие?

12. Стальное сверло массой 90 г, нагретое при закалке до температуры 840 °С, опущено в сосуд, содержащий машинное масло при температуре 20 °С. Какое количество масла следует взять, чтобы его конечная температура не превысила 70 °С?

13. В сосуд, содержащий 2,35 кг воды при температуре 20 °С, опускают кусок олова, нагретого до температуры 230 °С. Температура воды в сосуде при этом повысилась на 15 °С. Рассчитайте массу олова.

14. Для определения удельной теплоемкости железа в 200 г воды при температуре 18 °С опустили железную гирю массой 100 г при температуре 98 °С. Температура воды установилась равной 22 °С. Какова удельная теплоемкость железа по данным опыта?

15. Как изменится температура воды массой 900 г, если ей сообщить такое же количество теплоты, какое идет на нагревание алюминиевого цилиндра массой 3 кг на 100 °С?

16. На сколько градусов нагреются 80 л воды за счет количества теплоты, полученного от сжигания 1,5 кг сухих дров?

17. Рассчитайте количество керосина, которое потребуется сжечь для того, чтобы нагреть 8 кг воды от 10 до 100 °С, если считать, что вся энергия, выделенная при сгорании керосина, пойдет на нагрев воды.

18. В чайнике на газовой плите находилось 3 л воды при температуре 20 °С. Определите, сколько природного газа сгорает за 1 с, если в этом чайнике за 15 мин вскипятили воду. Потерями тепла пренебречь.

19. На сколько изменится температура воды массой 50 кг, если считать, что вся теплота, выделяемая при сжигании 500 г древесного угля, пойдет на нагревание воды?

20. Сколько нужно сжечь керосина, чтобы довести до кипения 4 л воды, если начальная температура воды 20 °С а потери энергии составили 25%?

21. Определите КПД спиртовки, если для нагревания 100 г воды от температуры 20 °С до температуры 90 °С сожгли 5 г спирта.

22. На сколько изменится температура воды, масса которой 22 кг, если ей передать 30% энергии, выделившейся при полном сгорании 2 кг сухих дров?

23. Какое количество древесного угля надо сжечь в самоваре, емкость которого равна 5 л, а КПД составляет 25%, чтобы нагреть в нем воду от температуру 20 °С до температуры 100 °С?

24. В резервуаре нагревателя находится 800 г керосина. Сколько литров воды можно нагреть этим количеством керосина от температуры 20 °С до температуры 100 °С, если КПД нагревателя равен 40%?

25. Чему равен КПД самовара, если для нагревания в нем 3 л воды от температуры 10 °С до температуры 100 °С требуется сжечь 75 г каменного угля?

Библиотека образовательных материалов для студентов, учителей, учеников и их родителей.

Наш сайт не претендует на авторство размещенных материалов. Мы только конвертируем в удобный формат материалы из сети Интернет, которые находятся в открытом доступе и присланные нашими посетителями.

Если вы являетесь обладателем авторского права на любой размещенный у нас материал и намерены удалить его или получить ссылки на место коммерческого размещения материалов, обратитесь для согласования к администратору сайта.

Разрешается копировать материалы с обязательной гипертекстовой ссылкой на сайт, будьте благодарными мы затратили много усилий чтобы привести информацию в удобный вид.

© 2014-2021 Все права на дизайн сайта принадлежат С.Є.А.

Инфо стройка

  • Главная
  • Строительство
  • Отделка
  • Сантехника
  • Электрика
  • Окна
  • Двери
  • Дизайн
  • Инструменты
  • Стройматериалы
  • Контакты

Чему равна удельная ⚡ теплоемкость кирпича массой 3кг, если при его остывании

Удельная теплоемкость некоторых распространенных веществ

Удельная теплоемкость некоторых обычных продуктов приведена в таблице ниже.

См. Также табличные значения для газов, пищевых продуктов и пищевых продуктов, металлов и полуметаллов, обычных жидкостей и жидкостей и обычных твердых веществ, а также значения молярной удельной теплоемкости для обычных органических и неорганических веществ.

Для преобразования единиц используйте онлайн-конвертер единиц удельной теплоемкости.

См. Также табличные значения для газов, пищевых продуктов и продуктов питания, металлов и полуметаллов, обычных жидкостей и жидкостей и обычных твердых веществ, а также значения молярной удельной теплоемкости для обычных органических и неорганических веществ.

Плотность, удельный вес и удельный вес

Плотность определяется как массы на единицу объема . Масса — это свойство, и единица измерения плотности в системе СИ составляет [ кг / м 3 ].

Плотность может быть выражена как

, где
ρ = плотность [кг / м 3 ], [снарядов / фут 3 ]
м = масса [кг], [снаряды]
V = объем [м 3 ], [фут 3 ]
ν = удельный объем [м 3 / кг], [фут 3 / снаряд]

Империал (U.S.) единицами измерения плотности являются снарядов / фут 3 , но фунт-масса на кубический футфунтов м / фут 3 — . Обратите внимание, что существует разница между фунтами силы ( фунтов ) и фунтами силы ( фунтов ) . Пули могут быть умножены на 32,2 , что дает приблизительное значение в фунтах массы (фунт м ) .

  • 1 снаряд = 32,174 фунта м = 14,594 кг
  • 1 кг = 2.2046 фунтов м = 6,8521×10 -2 пробок
  • Плотность воды: 1000 кг / м 3 , 1,938 пробок / фут 3

См. Также Конвертер единиц — масса и Конвертер единиц — плотность

На атомном уровне частицы плотнее упакованы внутри вещества с большей плотностью. Плотность — это физическое свойство, постоянное при заданной температуре и давлении, которое может быть полезно для идентификации веществ.

Ниже на этой странице: Удельный вес (относительная плотность), Удельный вес для газов, Удельный вес, Примеры расчетов

См. Также: Плотности для некоторых распространенных материалов
Вода — Плотность, Удельный вес и Коэффициент теплового расширения — изменение температуры при 1, 68 и 680 атм, единицы СИ и британские единицы
Воздух — плотность, удельный вес и коэффициент теплового расширения — изменение температуры и давления, единицы СИ и британские единицы
Как измерить плотность жидких нефтепродуктов

Пример 1: Плотность мяч для гольфа
Пример 2: Использование плотности для определения материала
Пример 3: Плотность для расчета объемной массы

Удельный вес (относительная плотность) — SG — это безразмерная единица , определяемая как отношение плотности вещества к плотности воды — при заданной температуре e и может быть выражено как

, где
SG = удельный вес вещества
ρ вещества = плотность жидкости или вещества [кг / м 3 ]
ρ h3O = плотность воды — обычно при температуре 4 o C [кг / м 3 ]

Обычно используют плотность воды при температуре 4 o C (39 o F) в качестве эталона, так как вода в этой точке имеет самую высокую плотность 1000 кг / м 3 или 1.940 снарядов / фут 3 .

Поскольку удельный вес — SG — безразмерный, он имеет одинаковое значение в системе СИ и британской имперской системе (BG). Удельный вес жидкости имеет то же числовое значение, что и ее плотность, выраженная в г / мл или мг / м 3 . Вода обычно также используется в качестве эталона при расчете удельного веса твердых веществ.

См. Также Теплофизические свойства воды — плотность, температура замерзания, температура кипения, скрытая теплота плавления, скрытая теплота испарения, критическая температура.

Пример 4: Удельный вес железа
Удельный вес для некоторых распространенных материалов

Вернуться к началу

Удельный вес газов обычно рассчитывается по отношению к воздуху и определяется как как отношение плотности газа к плотности воздуха при заданной температуре и давлении.

Читать еще:  Стиль ремонта с кирпичами

Удельный вес может быть рассчитан как

где
SG = удельный вес газа
ρ газ = плотность газа [кг / м 3 ]
ρ воздух = плотность воздуха (обычно при NTP — 1,204 [кг / м 3 ])

Молекулярные веса могут использоваться для расчета удельного веса, если плотности газа и воздуха оцениваются при такое же давление и температура.

См. Также Теплофизические свойства воздуха — плотность, вязкость, критическая температура и давление, тройная точка, энтальпии и энтропии, теплопроводность и диффузность, .

Определен удельный вес как вес на единицу объема . Масса , сила . Единица измерения удельного веса в системе СИ — [Н / м 3 ]. Британская единица измерения — [фунт / фут 3 ].

Удельный вес (или усилие на единицу объема) можно выразить как

, где
γ = удельный вес (Н / м 3 ], [фунт / фут 3 ]
ρ = плотность [кг / м 3 ], [снаряды / фут 3 ]
a g = ускорение свободного падения (9.807 [м / с 2 ], 32,174 [фут / с 2 ] при нормальных условиях)

Пример 5: Удельный вес воды

Удельный вес для некоторых распространенных материалов
Примеры

Пример 1: Плотность мяча для гольфа

A диаметром 42 мм и массой 45 г.Объем мяча для гольфа можно рассчитать как

V = (4/3) π (42 [мм] * 0,001 [м / мм] / 2) 3 = 3,8 10 -5 [м 3 ]

Плотность мяча для гольфа можно рассчитать как

ρ = 45 [г] * 0,001 [кг / г] / 3,8 10 -5 [м 3 ] = 1184 [кг / м 3 ]

Вернуться к началу

Пример 2: Использование плотности для идентификации материала

Неизвестное жидкое вещество имеет массу 18.5 г и занимает объем 23,4 мл (миллилитр).

Плотность вещества можно рассчитать как

ρ = (18,5 [г] / 1000 [г / кг]) / (23,4 [мл] / (1000 [мл / л] * 1000 [л / м] ) 3 ]))

= 18,5 10 -3 [кг] / 23,4 10 -6 [м 3 ] = 790 [кг / м 3 ]

Если мы посмотрим на плотность В некоторых распространенных жидкостях мы обнаруживаем, что этиловый спирт — или этанол — имеет плотность 789 кг / м 3 .Жидкость может быть этиловым спиртом!

Пример 3: Плотность для расчета объемной массы

Плотность титана 4507 кг / м 3 . Масса 0,17 м 3 объемный титан можно рассчитать как

м = 0,17 [м 3 ] * 4507 [кг / м 3 ] = 766,2 [кг]

Примечание! — имейте в виду, что существует разница между «насыпной плотностью» и фактической «плотностью твердого тела или материала». Это может быть неясно в описании товаров.Перед важными расчетами всегда перепроверяйте значения с другими источниками.

Вернуться к началу

Пример 4: Удельный вес железа

Плотность железа составляет 7850 кг / м 3 . Удельный вес железа относительно воды с плотностью 1000 кг / м 3 составляет

SG (железо) = 7850 [кг / м 3 ] / 1000 [кг / м 3 ] = 7,85

Пример 5: Удельный вес воды

Плотность воды составляет 1000 кг / м3 при 4 ° C (39 ° F).

Удельный вес в единицах СИ составляет

γ = 1000 [кг / м 3 ] * 9,81 [м / с 2 ] = 9810 [Н / м 3 ] = 9,81 [кН / м 3 ]

Плотность воды составляет 1,940 пробок / фут3 при 39 ° F (4 ° C).

Удельный вес в имперских единицах равен

γ = 1,940 [снаряды / фут 3 ] * 32,174 [фут / с 2 ] = 62,4 [фунт / фут 3 ]

Удельная теплоемкость — Простая английская Википедия, бесплатная энциклопедия

Удельная теплоемкость ( с ) — это особый тип теплоемкости. Удельная теплоемкость — это термодинамическое свойство, которое устанавливает количество тепла, необходимое для повышения одной единицы массы вещества на один градус температуры. [1] Для веществ наблюдаются различные диапазоны значений удельной теплоемкости в зависимости от степени поглощения ими тепла. Термин «теплоемкость» может вводить в заблуждение, поскольку тепло q — это термин, относящийся к добавлению или отведению энергии через барьер к веществу или системе в результате увеличения или уменьшения температуры соответственно.Температурные изменения — это на самом деле изменения энергии. Следовательно, удельная теплоемкость и другие формы теплоемкости являются более точными показателями способности вещества поглощать энергию при повышении температуры вещества.

Единицы очень важны для выражения любого термодинамического свойства; то же самое верно и для теплоемкости. Энергия в виде тепла выражается в джоулях (Дж) или килоджоулях (кДж), которые являются наиболее распространенными единицами, связанными с энергией. Одна единица массы измеряется в граммах или килограммах с учетом удельной теплоемкости.Один грамм — это стандартная форма, используемая в таблицах значений удельной теплоемкости, но иногда встречаются ссылки с использованием одного килограмма. Один градус температуры измеряется по шкале Цельсия или Кельвина, но обычно по Цельсию. Наиболее часто встречающимися единицами измерения удельной теплоемкости являются Дж / (г • ° C).

Факторы, определяющие удельную теплоемкость [изменить | изменить источник]

Температура и давление [изменить | изменить источник]

Два фактора, которые изменяют удельную теплоемкость материала, — это давление и температура.Удельная теплоемкость определяется при стандартном постоянном давлении (обычно атмосферном) для материалов и обычно указывается при 25 ° C (298,15 K). Используется стандартная температура, поскольку удельная теплоемкость зависит от температуры и может изменяться при различных значениях температуры. [2] Удельная теплоемкость называется интенсивным свойством (en: Интенсивные и экстенсивные свойства интенсивным свойством). Пока температура и давление находятся на стандартных эталонных значениях и не происходит фазового перехода, значение для любого материала остается неизменным независимо от массы присутствующего материала. [1]

Энергетические степени свободы [изменить | изменить источник]

Большой фактор в величине удельной теплоемкости материала лежит на молекулярном уровне в энергетическом en: Степени свободы (физика и химия), степени свободы, доступные для материала в фазе (твердой, жидкой или газовой), в которой нашлось. Энергетические степени свободы бывают четырех типов: поступательные, вращательные, вибрационные и электронные. Для достижения каждой степени свободы требуется минимальное количество энергии.Следовательно, количество энергии, которое может храниться в веществе, зависит от типа и количества энергетических степеней свободы, которые вносят вклад в вещество при данной температуре. [2] Жидкости обычно имеют больше низкоэнергетических режимов и больше энергетических степеней свободы, чем твердые тела и большинство газов. Этот более широкий диапазон возможностей в пределах степеней свободы обычно создает большие удельные теплоемкости для жидких веществ, чем для твердых веществ или газов. Эту тенденцию можно увидеть в en: Теплоемкость № Таблица удельных теплоемкостей Таблица удельных теплоемкостей и сравнение жидкой воды с твердой водой (лед), медью, оловом, кислородом и графитом.

Удельная теплоемкость используется для расчета количества тепла, поглощаемого при добавлении энергии к материалу или веществу за счет повышения температуры в определенном диапазоне. Расчет количества тепла или энергии, добавляемой к материалу, является относительно простым процессом, если записаны начальная и конечная температуры материала, указана масса материала и известна удельная теплоемкость. Удельная теплоемкость, масса материала и шкала температуры должны быть в одних и тех же единицах, чтобы точно выполнить расчет тепла.

Уравнение для расчета тепла ( q ) выглядит следующим образом:

Q = с × м × Δ T

В уравнении с — удельная теплоемкость в (Дж / г • ° C). м — масса вещества в граммах. Δ T относится к изменению температуры (° C), наблюдаемому в веществе. Согласно принятому соглашению начальная температура материала вычитается из конечной температуры после нагревания, так что Δ T равно T Final -T Initial в уравнении.Подстановка всех значений в уравнение и умножение на них отменяет единицы массы и температуры, оставляя соответствующие единицы джоулей для тепла. Подобные расчеты полезны в en: Калориметрия калориметрия

  1. ↑ 1,0 1,1 Ebbing, Darrell D .; Гаммон, Стивен Д. Общая химия. Бельмонт: Брукс / Коул, 2013. Печать. п. 242.
  2. ↑ 2,0 2,1 Engel, Thomas .; Рид, Филипп. Физическая химия. Бостон: Пирсон, 2013.Распечатать. С. 25-27.

.

39. Измерение количества теплоты

Сборник задач по физике, Лукашик В.И.

991. Почему нельзя вскипятить ведро воды на спиртовке?
Количество теплоты, передаваемое спиртовке в единицу времени мало. При достижении некоторой температуры оно все будет уходить на повышение внутренней энергии окружающей среды.

992. В одинаковые сосуды с равными массами и равной температурой воды погрузили свинцовый и оловянный шары, у которых одинаковые массы и температуры. Температура воды в сосуде с оловянным шаром повысилась больше, чем в другом сосуде. У какого металла — свинца или олова — удельная теплоемкость больше? Одинаково ли изменилась внутренняя энергия воды в сосудах? Одинаковое ли количество теплоты передали шары воде и сосудам?
Удельная теплоемкость олова выше удельной теплоемкости свинца. Внутренняя энергия воды больше увеличилась в сосуде с оловянным шаром, потому что он передал ей большее количество теплоты.

993. Если прогретые в кипящей воде цилиндры из свинца, олова и стали массой 1 кг поставить на лед, то они охладятся и часть льда под ними растает. Как изменится внутренняя энергия цилиндров? Под каким из цилиндров растает больше льда, под каким — меньше? Какая из лунок (рис. 263) образовалась под свинцовым цилиндром, какая — под стальным?
Внутренняя энергия цилиндров уменьшится за счет теплообмена со льдом. Размер лунок пропорционален удельной теплоемкости тел, левая лунка образовалась под свинцовым цилиндром, средняя — под стальным.

994. Минеральное масло и стальная деталь имеют равные массы. Для закалки стали горячую деталь погрузили в масло. При этом температура масла изменилась меньше, чем температура детали. Какое вещество имеет большую удельную теплоемкость: сталь или масло? Ответ обоснуйте.
Большую удельную теплоемкость имеет масло, т.к. теплоемкость обратно пропорциональна температуре при постоянном количестве теплоты, полученным или отданным телом.

995. Кубики, изготовленные из меди, стали и алюминия, массами 1 кг каждый охлаждают на 1 °С. На сколько джоулей и как меняется внутренняя энергия каждого кубика?
Удельной теплоемкостью называется величина, равная такому количеству теплоты, которое требуется для изменения температуры тела массой 1 кг на 1°С. Используя таблицу теплоемкостей, находим, что внутренняя энергия медного кубика уменьшается на 380 Дж, стального — на 500 Дж, алюминиевого — на 920 Дж.

Читать еще:  Углепластиковый анкер для облицовочного кирпича

996. На что больше расходуется энергии: на нагревание чугунного горшка или воды, налитой в него, если их массы одинаковы?
На нагревание воды, поскольку ее теплоемкость выше, чем у чугуна.

997. Алюминиевую и серебряную ложки одинаковой массы и температуры опустили в кипяток. Равное ли количество теплоты получат они от воды?
Алюминий получит большее количество теплоты, поскольку теплоемкость алюминия больше теплоемкости серебра.

998. Стальную деталь для закалки и медную заклепку равной массы для отжига нагрели до одинаковой температуры, а затем погрузили в воду. Одинаковое ли количество теплоты получила вода при охлаждении этих тел?
Вода получила большее количество теплоты от стальной за¬клепки, поскольку теплоемкость стали больше теплоемкости меди.

999. Термос вместимостью 3 л заполнили кипятком. Через сутки температура воды в нем понизилась до 77 °С. Определите, на сколько изменилась внутренняя энергия воды.

1000. В алюминиевом чайнике нагревали воду и, пренебрегая потерями количества теплоты в окружающее пространство, построили графики зависимости количества теплоты, полученной чайником и водой, от времени нагревания. Какой график построен для воды, а какой —для чайника (рис. 264)?
I – чайник; II – вода.

1001. На одинаковых горелках нагревались вода, медь и железо равной массы. Укажите, какой график (рис. 265) построен для воды, какой — для меди и какой — для железа. (При построении графика потери некоторого количества теплоты в окружающее пространство не учитывались.)
I – вода; II – железо; III — медь.

1002. Для изменения температуры нафталина, никеля и фарфора массой 1 кг на 1 °С соответственно требуется 130, 460 и 750 Дж энергии. Чему равна удельная теплоемкость этих веществ?

1003. Для нагревания на 1 °С молока и тел из золота, бронзы, никеля, глицерина массами по 2 кг каждое соответственно расходуется 260, 760, 920, 4800 и 7800 Дж энергии. Чему равна удельная теплоемкость этих веществ?

1004. Нагретый камень массой 5 кг, охлаждаясь в воде на 1 °С, передает ей 2,1 кДж энергии. Чему равна удельная теплоемкость камня?

1005. Определите (устно), какое количество теплоты потребуется для изменения температуры алюминия на 1 °С; свинца на 2 °С; олова на 2 °С; платины на 3 °С; серебра на 3 °С, если масса каждого вещества 1 кг.

1006. Какое количество теплоты потребуется для нагревания на 1 °С воды объемом 0,5 л; олова массой 500 г; серебра объемом 2 см3; стали объемом 0,5 м3; латуни массой 0,2 т?

1007. Стальная деталь массой 20 кг при обработке на токарном станке нагрелась на 50 °С. На сколько джоулей увеличилась внутренняя энергия детали?

1008. Стальное сверло массой 10 г при работе нагрелось от 15 до 115 °С. Сколько энергии израсходовано двигателем непроизводительно на нагревание сверла?

1009. Перед горячей штамповкой латунную болванку массой 15 кг нагрели от 15 до 750 °С. Какое количество теплоты отдаст болванка окружающим телам при охлаждении до 15 °С?

1010. Какое количество теплоты отдаст стакан кипятка (250 см3), остывая до температуры 14 °С?

1011. Какое количество теплоты отдаст кирпичная печь массой 0,35 т, если при ее остывании температура изменилась на 50 °С?

1012. Какое количество теплоты выделилось при охлаждении чугунной болванки массой 32 кг, если ее температура изменилась от 1115 до 15 °С?

1013. а) Воздух, заполняющий объем 0,5 л в цилиндре с легким поршнем, нагрели от 0 до 30 °С при постоянном атмосферном давлении. Какое количество теплоты получил воздух?
б) В порожнем закрытом металлическом баке вместимостью 60 м3 под действием солнечного излучения воздух нагрелся от 0 до 20 °С. Как и на сколько изменилась внутренняя энергия воздуха в баке? (Удельная теплоемкость воздуха при постоянном объеме равна 720 Дж/кг-°С.)

1014. Какое количество теплоты передаст окружающим телам кирпичная печь массой 1,5 т при охлаждении от 30 до 20 °С?

1015. Какое количество теплоты получили алюминиевая кастрюля массой 200 г и находящаяся в ней вода объемом 1,5 л при нагревании от 20 °С до кипения при температуре 100 °С?

1016. В алюминиевой кастрюле, масса которой 800 г, нагрели 5 л воды от 10 °С до кипения. Какое количество теплоты получили кастрюля и вода, если при нагревании атмосферное давление равнялось 760 мм рт. ст.?

1017. В железный душевой бак, масса которого 65 кг, налили холодной колодезной воды объемом 200 л. В результате нагревания солнечным излучением температура воды повысилась от 4 до 29 °С. Какое количество теплоты получили бак и вода?

1018. Рассчитайте, какое количество теплоты отдаст кирпичная печь, сложенная из 300 кирпичей, при остывании от 70 до 20 °С. Масса одного кирпича равна 5,0 кг.

1019. Какое количество теплоты получила вода при нагревании от 15 до 25 °С в бассейне, длина которого 100 м, ширина 6 м и глубина 2 м?

1020. На сколько изменится температура воды в стакане, если ей сообщить количество теплоты, равное 10 Дж? Вместимость стакана принять равной 200 см3.

1021. Вычислите, на сколько градусов нужно повысить температуру куска свинца массой 100 г, чтобы внутренняя энергия его увеличилась на 280 Дж.

1022. Подсчитано, что при охлаждении куска олова массой 20 г внутренняя энергия его уменьшилась на 1 кДж. По этим данным определите, на сколько градусов изменилась температура олова.

1023. а) Мальчик вычислил, что при нагревании воды от 15 °С до кипения (при 100 °С) внутренняя энергия ее увеличится на 178,5 кДж. Какова масса нагреваемой воды?
б) Когда в бак умывальника с водой добавили еще 3 л воды при 100 °С и перемешали всю воду, то температура воды в баке стала равна 35 °С. Пренебрегая потерями теплоты на нагревание бака и окружающей среды, определите начальный объем воды в баке.
в) Чтобы вымыть посуду, мальчик налил в таз 3 л воды, температура которой равна 10 °С. Сколько литров кипятка (при 100 °С) нужно долить в таз, чтобы температура воды в нем стала равной 50 °С?
г) Для купания ребенка в ванну налили 4 ведра (40 л) холодной воды, температура которой была равна 6 °С, а затем долили горячую воду температурой 96 °С. Определите массу долитой воды, если температура воды в ванне стала равной 36 °С. (Расчет производите без учета нагревания ванны и окружающей среды.)

1024. Определите удельную теплоемкость металла, если для изменения температуры от 20 до 24 °С у бруска массой 100 г, сделанного из этого металла, внутренняя энергия увеличивается на 152 Дж.

1025. Экспериментом было установлено, что при изменении температуры куска металла массой 100 г от 20 до 40 °С внутренняя энергия его увеличилась на 280 Дж. Определите удельную теплоемкость этого металла.

1026. Экспериментом установили, что при охлаждении куска олова массой 100 г до температуры 32 °С выделилось 5 кДж энергии. Определите температуру олова до охлаждения.

1027. До какой температуры остынут 5 л кипятка, взятого при температуре 100 °С, отдав в окружающее пространство 1680 кДж энергии?

1028. При охлаждении медного паяльника до 20 °С выделилось 30,4 кДж энергии. До какой температуры был нагрет паяльник, если его масса 200 г?

1029. а) Было установлено, что при работе машины внутренняя энергия одной из алюминиевых деталей массой 2 кг повысилась на столько, на сколько увеличилась внутренняя энергия воды массой 800 г при нагревании ее от 0 до 100 °С. По этим данным определите, на сколько градусов повысилась температура детали.
б) В ванну налили и смешали 50 л воды при температуре 15 °С и 30 л воды при температуре 75 °С. Вычислите, какой стала бы температура воды в ванне, если бы некоторая часть внутренней энергии горячей воды не расходовалась на нагревание ванны и окружающей среды.
в) Пренебрегая потерями теплоты на нагревание ванны и иных тел окружающей среды, вычислите, какой стала бы температура воды в ванне, если в нее налить шесть ведер воды при температуре 10 °С и пять ведер воды при температуре 90 °С. (Вместимость ведра примите равной 10 л.)

1030. На нагревание кирпича массой 4 кг на 63 °С затрачено такое же количество теплоты, как и на нагревание воды той же массы на 13,2 °С. Определите удельную теплоемкость кирпича.

1031. Двигатель мощностью 75 Вт в течение 5 мин вращает лопасти винта внутри калориметра, в котором находится вода объемом 5 л. Вследствие трения о воду лопастей винта вода нагрелась. Считая, что вся энергия пошла на нагревание воды, определите, как изменилась ее температура.

1032. Стальной боек (ударная часть пневматического молотка) массой 1,2 кг во время работы в течение 1,5 мин нагрелся на 20 °С. Полагая, что на нагревание бойка пошло 40% всей энергии молотка, определите произведенную работу и мощность, развиваемую при этом.

0 0 голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты